Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110650

RESUMEN

Major obstacles faced by the use of nonsteroidal anti-inflammatory drugs (NSAID) are their gastrointestinal toxicity induced by non-selective inhibition of both cyclooxygenases (COX) 1 and 2 and their cardiotoxicity associated with a certain class of COX-2 selective inhibitors. Recent studies have demonstrated that selective COX-1 and COX-2 inhibition generates compounds with no gastric damage. The aim of the current study is to develop novel anti-inflammatory agents with a better gastric profile. In our previous paper, we investigated the anti-inflammatory activity of 4-methylthiazole-based thiazolidinones. Thus, based on these observations, herein we report the evaluation of anti-inflammatory activity, drug action, ulcerogenicity and cytotoxicity of a series of 5-adamantylthiadiazole-based thiazolidinone derivatives. The in vivo anti-inflammatory activity revealed that the compounds possessed moderate to excellent anti-inflammatory activity. Four compounds 3, 4, 10 and 11 showed highest potency (62.0, 66.7, 55.8 and 60.0%, respectively), which was higher than the control drug indomethacin (47.0%). To determine their possible mode of action, the enzymatic assay was conducted against COX-1, COX-2 and LOX. The biological results demonstrated that these compounds are effective COX-1 inhibitors. Thus, the IC50 values of the three most active compounds 3, 4 and 14 as COX-1 inhibitors were 1.08, 1.12 and 9.62 µΜ, respectively, compared to ibuprofen (12.7 µΜ) and naproxen (40.10 µΜ) used as control drugs. Moreover, the ulcerogenic effect of the best compounds 3, 4 and 14 were evaluated and revealed that no gastric damage was observed. Furthermore, compounds were found to be nontoxic. A molecular modeling study provided molecular insight to rationalize the COX selectivity. In summary, we discovered a novel class of selective COX-1 inhibitors that could be effectively used as potential anti-inflammatory agents.


Asunto(s)
Antineoplásicos , Tiadiazoles , Humanos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Tiadiazoles/uso terapéutico , Simulación del Acoplamiento Molecular , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Antineoplásicos/farmacología , Relación Estructura-Actividad , Edema/tratamiento farmacológico
2.
Molecules ; 27(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500230

RESUMEN

A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.


Asunto(s)
Inhibidores de la Ciclooxigenasa , Inhibidores de la Lipooxigenasa , Inhibidores de la Lipooxigenasa/farmacología , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Relación Estructura-Actividad , Estructura Molecular , Inhibidores de la Ciclooxigenasa 2/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química
3.
Molecules ; 26(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513963

RESUMEN

BACKGROUND: Inflammation is a complex response to noxious stimuli promoted by the release of chemical mediators from the damaged cells. Metabolic products of arachidonic acid, produced by the action of cyclooxygenase and lipoxygenase, play important roles in this process. Several non-steroidal anti-inflammatory drugs act as cyclooxygenase inhibitors. However, almost all of them have undesired side effects. METHODS: Prediction of the anti-inflammatory action of the compounds was performed using PASS Program. The anti-inflammatory activity was evaluated by the carrageenan paw edema test. COX and LOX inhibitory actions were tested using ovine COX-1, human recombinant COX-2 and soybean LOX-1, respectively. Docking analysis was performed using Autodock. RESULTS: All designed derivatives had good prediction results according to PASS and were synthesized and experimentally evaluated. The compounds exhibited in vivo anti-inflammatory action with eleven being equal or better than indomethacin. Although, some of them had no or low inhibitory effect on COX-1/2 or LOX, certain compounds exhibited COX-1 inhibition much higher than naproxen and COX-2 inhibition, well explained by Docking analysis. CONCLUSIONS: A number of compounds with good anti-inflammatory action were obtained. Although, some exhibited remarkable COX inhibitory action this activity did not follow the anti-inflammatory results, indicating the implication of other mechanisms.


Asunto(s)
Antiinflamatorios/farmacología , Triazoles/farmacología , Animales , Ácido Araquidónico/farmacología , Carragenina/farmacología , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Naproxeno/farmacología , Relación Estructura-Actividad
4.
Curr Top Med Chem ; 21(4): 257-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33319674

RESUMEN

BACKGROUND: Inflammation is a multifactorial process reflecting the response of the organism to various stimuli and is associated with a number of disorders such as arthritis, asthma and psoriasis, which require long-lasting or repeated treatment. OBJECTIVE: The aim of this paper is to evaluate the anti-inflammatory activity of previous synthesized thiazole-based chalcone derivatives. METHODS: Chalcones were synthesized via Cliazen-Schmidt condensation1-(4-methyl-2- alkylamino)thiazol-5-yl) ethanone with a corresponding aromatic aldehyde. For the evaluation of possible anti-inflammatory activity, carrageenan mouse paw edema was used. RESULTS: Eight out of thirteen tested chalcones showed anti-inflammatory activity in a range of 51- 55%. Prediction of toxicity revealed that these compounds are not toxic. CONCLUSION: In general, it can be concluded that these compounds can be used for further modifications in order to develop more active and safe agents.


Asunto(s)
Antiinflamatorios/farmacología , Chalconas/farmacología , Modelos Moleculares , Tiazoles/química , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Chalconas/química , Chalconas/uso terapéutico , Inflamación/tratamiento farmacológico , Ratones , Simulación del Acoplamiento Molecular
5.
Molecules ; 24(9)2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31064095

RESUMEN

Apart from their anti-inflammatory action, COX inhibitors have gathered the interest of many scientists due to their potential use for the treatment and prevention of cancer. It has been shown that cyclooxygenase inhibitors restrict cancer cell growth and are able to interact with known antitumor drugs, enhancing their in vitro and in vivo cytotoxicity. The permutation of hydrophilic and hydrophobic aryl groups in COX inhibitors leads to cardinal changes in the biological activity of the compounds. In the present study, thirteen heterocyclic coxib-like 4,5-diarylfuran-3(2H)-ones and their annelated derivatives-phenanthro[9,10-b]furan-3-ones-were synthesized and studied for anti-inflammatory and COX-1/2 inhibitory action and for their cytotoxic activity on the breast cancer (MCF-7) and squamous cell carcinoma (HSC-3) cell lines. The F-derivative of the -SOMe substituted furan-3(2H)-ones exhibited the best activity (COX-1 IC50 = 2.8 µM, anti-inflammatory activity (by carrageenan paw edema model) of 54% (dose 0.01 mmol/kg), and MCF-7 and HSC-3 cytotoxicity with IC50 values of 10 µM and 7.5 µM, respectively). A cytotoxic effect related to the COX-1 inhibitory action was observed and a synergistic effect with the anti-neoplastic drugs gefitinib and 5-fluorouracil was found. A phenanthrene derivative exhibited the best synergistic effect with gefitinib.


Asunto(s)
Furanos/química , Furanos/farmacología , Secuencia de Aminoácidos , Aminoácidos/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Carragenina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Diseño de Fármacos , Edema/metabolismo , Flúor/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
6.
Eur J Med Chem ; 84: 160-72, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25016374

RESUMEN

A novel series of compounds containing a polar, non-flat 2-imidazoline core was designed based on the SAR information available for aromatic azole cyclooxygenase-2 inhibitors. While the majority of the compounds prepared using an earlier developed imidazoline N-arylation methodology turned out to be inferior to the known COX-2 inhibitors, one lead compound displayed potency (300 nM) comparable to clinically used Celecoxib and was shown to be more selective. The series represents the first example of selective COX-2 inhibitors built around a distinctly polar core, contradicting an earlier accepted view that a lipophilic scaffold is required for high inhibitor potency. The lead compound demonstrated very good oral bioavailability in mice, slow metabolic degradation, modest distribution into the brain and a remarkable anti-inflammatory efficacy in carrageenan-induced mouse paw edema model. A foundation has therefore been laid for a chemically novel series of COX-2 inhibitors that has a potential for diverse therapeutic applications in inflammatory disease area.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Imidazoles/química , Imidazoles/farmacología , Administración Oral , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Disponibilidad Biológica , Carragenina , Inhibidores de la Ciclooxigenasa 2/química , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Imidazoles/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
7.
Ann Gen Hosp Psychiatry ; 3(1): 1, 2004 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-14711381

RESUMEN

BACKGROUND: Tardive dyskinesia (TD) is a major limitation of older antipsychotics. Newer antipsychotics have various other side effects such as weight gain, hyperglycemia, etc. In a previous study we have shown that an indolamine molecule expresses a moderate binding affinity at the dopamine D2 and serotonin 5-HT1A receptors in in vitro competition binding assays. In the present work, we tested its p-toluenesulfonyl derivative (TPBIA) for behavioral effects in rats, related to interactions with central dopamine receptors and its antioxidant activity. METHODS: Adult male Fischer-344 rats grouped as: i) Untreated rats: TPBIA was administered i.p. in various doses ii) Apomorphine-treated rats: were treated with apomorphine (1 mg kg-1, i.p.) 10 min after the administration of TPBIA. Afterwards the rats were placed individually in the activity cage and their motor behaviour was recorded for the next 30 min The antioxidant potential of TPBIA was investigated in the model of in vitro non enzymatic lipid peroxidation. RESULTS: i) In non-pretreated rats, TPBIA reduces the activity by 39 and 82% respectively, ii) In apomorphine pretreated rats, TPBIA reverses the hyperactivity and stereotype behaviour induced by apomorphine. Also TPBIA completely inhibits the peroxidation of rat liver microsome preparations at concentrations of 0.5, 0.25 and 0.1 mM. CONCLUSION: TPBIA exerts dopamine antagonistic activity in the central nervous system. In addition, its antioxidant effect is a desirable property, since TD has been partially attributed, to oxidative stress. Further research is needed to test whether TPBIA may be used as an antipsychotic agent.

8.
Arch Pharm (Weinheim) ; 335(6): 262-6, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12210768

RESUMEN

Alkannin and shikonin, two natural products from Alkanna tinctoria and Lithospermum erhythrorhizon (Boraginaceae), are used in folk medicine where they are claimed to possess, among other properties, wound healing and anti-inflammatory activity. We investigated, together with the structurally related naphthazarin, their in vitro antioxidant and hydroxyl radical scavenging activity as well as their in vivo antiinflammatory activity. I was found that all examined compounds significantly inhibited in vitro lipid peroxidation of ra hepatic microsomal membranes, competed with DMSO for free hydroxyl radicals, and reduced inflammation (mouse paw edema induced by FCA) very efficiently. The examined compounds proved equal or superior to the common reference compounds for each of these properties. I is concluded that the claimed and/or proven actions of alkannin and shikonin are attributable at least partly to their intervention in free radical processes.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Depuradores de Radicales Libres/farmacología , Naftoquinonas/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Dimetilsulfóxido , Edema/inducido químicamente , Edema/patología , Edema/prevención & control , Femenino , Depuradores de Radicales Libres/química , Adyuvante de Freund , Peroxidación de Lípido/efectos de los fármacos , Naftoquinonas/química , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...